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Source

• Applied Multivariate Statistical Analysis by 

Richard Johnson and Dean Wichern, 2002

• Using Multivariate Statistics by Barbara 

Tabachnick and Linda Fidell, 1996
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Introduction

• Principal comonent analysis (PCA) and factor analysis 
(FA) are statistical techniques applied to a single set of 
variables where the researcher is interested in 
discovering which variables in the set form coherent 
subsets that are relatively independent of one another.

• Variables that are correlated with one another but 
largely independent of other subsets of variables are 
combined into factors. 

• Factors are thought to reflect underlying processes that 
have created the correlations among variables. m
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Purpose of PCA and FA

• The specific goals of PCA or FA are to

– summarize patterns of correlations among 

observed variables, 

– to reduce a large number of observed variables to 

a smaller number of factors, 

– to provide an operational definition for an 

underlying process by using observed variables or

– To test a theory about the nature of underlying 

process
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Fundamental Steps

• Steps in PCA or FA include

– Selecting and measuring a set of variables

– Preparing the correlation matrix

– Extracting a set of factors from the correlation matrix

– Determining the number of factors

– (probably) rotating the factors to increase interpretability

– interpreting the results

• Although there are relevant statistical considerations to 
most of these steps, an important test of the analysis is 
its interpretability. 
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Limitations

• One of the problems with PCA and FA is that there is 
no criterion variable against which to test the solution. 

• In regression analysis, for instance, the dependent 
variable (DV) is a criterion and the correlation between 
observed and predicted DV scores serves as a test of 
the solution

• In classification, the solution is judged by how well it 
predicts group membership. 

• But in PCA or FA there is no external criterion such as 
group membership against which to test the solution. 
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Limitations (Cont’d)

• A second problem with FA or PCA is that, after 

extraction, there is an infinite number of 

rotations available, all accounting for the same 

amount of variance in the original data, but 

with factors designed slightly differently. 

• The final choice among alternatives depends 

on the researcher’s assessment of its 

interpretability and scientific utility. 
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Practical Issues

• Because FA and PCA are exquisitely sensitive 

to the sizes of correlations, it is critical that 

honest, reliable correlations be employed. 

• Sensitivity to outlying cases, problems created 

by missing data, and degradation of 

correlations between poorly distributed 

variables all plague FA and PCA. 
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Normality

• As long as PCA and FA are used descriptively as 
convenient ways to summarize the relationships in a 
large set of observed variables, assumptions regarding 
the distributions of variables are not in force. 

• If variables are normally distributed, the solution is 
enhanced. To the extent that normality fails, the 
solution is degraded but may still be worthwhile.

• However, multivariate normality is assumed when 
statistical inference is used to determine the number of 
factors. Multivariate normality is the assumption that 
all variables, and all linear combinations of variables, 
are normally distributed. 
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Result 1

• Let ∑ be the covariance matrix associated 

with the random vector X’. Let Yi be the ith

principal component .

– Var(Yi) = λi +                     i=1, 2, ….p

– Cov(Yi, Yk) = 0                 i ≠ k

• σ11 + σ22 + ….. σpp = ∑ Var(Xi) = λ1 + λ2 + ……. 

λp = ∑ Var(Yi)

Sajjad Haider 10Spring 2010



5/28/2010

6

Example 1

• ∑ =

• Computer eigen values and eigen vectors

• Using R

– eigen(X)

• Verify V(X) = V(Y)

1 -2 0

-2 5 0

0 0 2
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Example 2

• ∑ = 

• ρ = 

• Compare principal components obtained 

through covariance and correlation matrix. 

1 4

4 100

1 0.4

0.4 1
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Eigen Value Computation

• When a transformation is represented by a square 
matrix A, the eigen value equation can be expressed as 
Ax – λx = 0

• Where I is the identify matrix. The can be rearranged to 
(A – λI)x = 0

• If there exists an inverse (A – λI)-1 then both sides can be 
left multiplied by the inverse to obtain the trivial 
solutions: x = 0. Thus we require there to be no inverse 
by assuming from linear algebra that the determinants 
equals zero:

• det(A – λI) = 0

• To compute eigen vectors, solve for Ax = λx for all values 
of λ.
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Example 3

• Analyze iris data using R
– X <- cbind(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width)

• Computer covariance
– X_Cov <- cov(X)

• Compute eigen values and vectors 
– X_Eig <- eigen(X_Cov)

• We can perform PCA directly as well
– X_PCA <- princomp(X, cor=FALSE)

– summary(X_PCA)

– loadings(X_PCA)

– plot(X_PCA, type=“lines”)

– Y <- X_PCA$scores

– cor(X, Y)
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